Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction
نویسندگان
چکیده
The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem.
منابع مشابه
Effects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner-Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/Shrinking Eedge
In the present investigation, the magnetohydrodynamic Falkner-Skan flow of tangent hyperbolic nanofluids over a stretching/shrinking wedge with variable suction, internal heat generation/absorption and chemical reaction with activation energy have been scrutinized. Nanofluid model is composed of “Brownian motion’’ and “Thermophoresis’’. Transformed non-dimensional coupled non-linear equations a...
متن کاملMagnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach
A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...
متن کاملNon-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model
The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the eff...
متن کاملThe Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction
The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is p...
متن کاملFlow Past a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Two-Phase Model
The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The gover...
متن کامل